1. 서론

Seebeck 효과 (1821년)와 Peltier 효과 (1834년) 등
의 열전 효과 (Thermoelectric Effects)는 거의 200년
의 오랜 역사를 가지고 있으며 지난 1950년대까지
많은 연구가 이루어져 왔다. 그러나 열전 성능 지수
(Figure of Merit, ZT) 항상의 한계에 부딪혀 그 뒤어
난 응용성에도 불구하고 산업적으로 제한적 분야에
만 사용되고 있으며, 연구성과 평판에서도 1990년대
말까지 큰 진척을 가져오지 못하였다 (그림 1). 열전
재료의 효율성은 단위가 없는 열전 성능 지수
(Figure of Merit) ZT = S^2σT/κ로 표현되며, 물질 고
유의 특성에 의해 결정된다. 여기서 S는 Seebeck 상
수, σ는 전기전도도 (Electrical Conductivity), κ는 열
전도도 (Thermal Conductivity)이고 T는 온도를 나
타낸다.

1950년대에 열전 반도체가 열전프로세스 효과적인
역할을 한다는 것을 발견한 이후 열전 발전, 열전 냉
장고 등 새로운 응용 분야에 대해 큰 기대를 모았으
나 1960년대부터 1990년에 이르기까지 가장 우수한
열전 반도체로 알려진 Bi₂Te₃ (ZT = 1)를 능가하는 물
질이 발견되지 않았고, Bi₂Te₃가 현재 상용화된 열전
반도체 소자의 대부분을 차지한다 [1]. 열전소자가
다른 기존 소자의 에너지 변환 효율 (카르노 효율 =
0.3)과 비교해서 경쟁력을 가지려면 ZT값이 3 이상
되야 한다 (그림 2).

ZT는 τ, σ, κ값에 의해 결정되는데, 이 세 인자
(Parameter)는 각각 서로 연관되어 있다. 전자의 수
가 증가함수록 전기전도도는 증가하지만 동시에
Seebeck 상수의 감소를 가져오고, 열전도의 경우
물질의 격자 진동 (Lattice Vibration)에 의해 기인될
뿐만 아니라 자유 전자 (Free Electron)의 영향을 동
시에 받기 때문에 전자 수의 증가는 열전도도를 증
가시키는 주요한 원인이다. 뿐만 아니라 물질의
열전도도를 감소시키는 것은 산란 메커니즘

그림 1. 연도별 상온 열전 성능 지수 (ZT)의 발전 동향.

그림 2. 카르노 효율과 ZT값과의 비교.
Special Thema

(Scattering Mechanism)에 의해 이룰 수 있으나 전기 전도도의 단위에 감소시킨다. 이러한 세입차의 상세 적 작용으로 인하여, 하나의 인자를 증가시키게 되면 다른 인자들이 감소하는 경향으로 인하여 좀처럼 더 좋은 전전 물질이 발견되지 않고 있다.

그 동안 열전은 학계에서 큰 주목을 끌지 못하였지만 그럼에도 불구하고 열전 현상을 이용한 산업은 우주항공, 특수 군사 분야, 의료기기 등에서 이용이 활발하다. 열전 성능은 중요한 품재를 이용하는 핵자원의 핵전력에서 중요한 역할을 한다. 1990년대에 들어 환경 및 에너지 문제로 대두되면서 열전의 잠재적 가능성은 다시 주목받게 되었다. 1993년 미국 MIT의 Dresselhaus 교수팀이 나노재료를 사용하여 열전 성능을 높일 수 있다는 이론을 발표하면서 열전에 대한 연구는 재점등되기 시작하였다[2, 3].

Dresselhaus 교수팀은 저차원 나노 구조물에서 열전 성능을 평가하기 위한 각각의 인자(S, α, δ)가 서로 간의 상대가 없이 열전 성능을 높일 수 있다는 이론의 근거를 발표하였다. 이 연구는 양자 구속 효과 (Quantum Confinement Effects)로 인하여 상대 밀도 합병률을 높여 보다 높은 열전 성능을 증가시킬 수 있는 S(α, δ)의 효과가 주가 되어 3D(3rd Dimension)의 효과를 통제하게 조절할 수 있다는 것이 핵심이다.

지난 15년간 양자 구속 효과는 많은 주목을 받아 왔고 이에 따른 ZT를 증가시키는 경로로 이어졌다(그림 1). 지난 8년간 연구 보고를 살펴보면 2001년 Venkatasubramanian 그룹에서 Bi₂Te₃와 Sb₂Te₃의 나노구조로 갖는 층지자 백막의 경우 실온에서 ZT가 약 2.4을 가지며[4], 2002년 MIT 대학의 Harman 교수팀에서 개발한 PbSeTe/PbTe 양자점 전도체 백막의 경우 ZT가 약 1.3~1.6의 값을 가질다고 보고되었다[5]. 열전 재료에 대한 지난 200년간의 역사적인 관점에서 보면 상기한 두 차원 나노구조 재료는 단 간의 열전량 ZT의 도약을 가져왔다. 또한 2004년 Michigan State 대학의 Kanatzidis 교수팀은 AgPb₀.₇5Sn₀.₂5Se보나로복합재료를 사용하여 800 K에서 ZT = 2를 기록하였다[6]. 최근에는 UC Berkeley대학의 Majumdar 교수팀이 열전 성능 지수 ZT = 0.6인 Si 나노선을 제조하였다[7]. 그리고 Caltech의 Heath 교수팀은 도핑정도가 다른 Si 나노선을 연구하여 열전성능지수 ZT = 1을 보고하였다[8]. 특히, Si 나노선의 연구는 Si 나노선이 박막 Si에 비해 열전 성능이 100배 이상 향상되었으나 무기 재료 중 매우 값진 Sn으로 좋은 열전특성을 구현한 결과는 매우 중요한 의미를 갖는다.

현재까지 저차원 시스템의 ZT 향상은 포논이 전자보다 나노 구조물의 경계면에서 더 잘 산란하는 효과에 의해 열전도를 감소시키는데 기여한 것이었다. 그러나 ZT값은 충분히 증가시키기 위해서는 열전도의 감소뿐만 아니라 전력인자 (Power Factor)의 증가가 중요하다. 그림 3에서 보는 바와 같이 이론에 의하면 주어진 열전 물질에 대해 이차원 구조 (2D)보다 일차원 구조 (1D)에서 ZT가 훨씬 더 큰 값을 갖는다고 예측된다. 반금속 Bi는 매우 큰 이방성의 3차원 폴리미트 면 (Fermi Surface)을 가지고 있으며, 높은 이동도 (Mobility)와 매우 작은 전자 유전정량 ma (~0.001 m₀) 등의 특징으로 인해 초기효율을 열전 재료에 관한 연구에서 매우 주목 받는 물질이다. 또한 Bi는 반금속과의 상호 작용이 강한 관계로 S가 상대적으로 매우 큰 값을 갖지만 양자 구속 효과가 임어 나면 반금속-반도체 전이 (Semimetal to Semiconductor Transition)가 일어나서 상쇄효성이 없이므로 매우 큰 ZT를 기대할 수 있다. 특히 전자유전정 황이 매우 작으므로 양자 구속효과를 무질 중 가장

![그림 3. Bi의 이차원 구조 (2D)와 일차원 구조 (1D)의 ZT값 비교.](image-url)
2. 나노선 열전의 이론적 배경

어떻게 저차원 나노 구조가 ZT값을 증가시킬 수 있을까? 벤큐 향상은 앞에서 언급한 바와 같이 $S \propto Q$의 값이 서로 연관되어 있는 관계로 한가지 특성을 변화시키면 그로 인해 다른 특성을 변화할 수 있다. 증가형 ZT값을 증가시키는 것이 쉽지 않다. 예를들어 전력 인자 S^2의 값은 변화한 값을 갖고 그리도 투명한 반도체의 경우 $n=10^{12}/cm^3$ 정도가 최적의 전하 운반 농도를 가질 때 얻어지는 $S=172 \mu V/K$보다 [9]. 반도체에서 전선도 s는 전기경해에 의한 포온 (q_0)에 의한 열전도도가 저해적이며, q_0 값을 감소시키기 위한 노력으로 전하 운반자의 이동도를 감소시키면 이를 인해 전선도가 낮아진다. 새로운 구조인자를 도입함으로써 상호 연결된 고리에 맺어 낼 수 있다. 이는 저차원 열전의 핵심이다. 이 구조인자는 2차원에서 양자우물의 두께가 될 수 있고 1차원에서는 나노선의 두께가 되며, 0차원에서는 양자점의 적층이 될 수 있다. 결정적으로 저차원 나노 구조를 사용하게 되면 다음 세가지 이점을 이루어 낼 수 있다.

$$\sigma = \int \sigma(E) \left(\frac{\partial \sigma(E)}{\partial E} \right) dE$$

Cutler와 Mott는 이 식으로부터 S를 다음과 같이 유도하였다.

$$S = \frac{k_b}{q} \int \sigma(E) \left(\frac{E - E_F}{k_b T} \right) \left(\frac{\partial \sigma(E)}{\partial E} \right) dE$$

여기서, k_b는 Boltzmann 상수이고, q는 전하운반자 의 전하량이고 E_F는 Fermi Energy이다. 특히 측정 도중에 사용된 반도체의 경우 페르미 동작분포는 최적화되고 식 (2)는 일반적으로 Mott 방정식으로 표현된다.

$$S = \frac{\pi k_b}{3 q} k_b T \int \left(\frac{d \ln(\sigma(E))}{dE} \right)_{E=E_F}$$

이식은 전기전도도 범주 정반에 걸쳐 이루어지던지 혹은 특정 상태에 한정되어 있을지, 일반적으로 잘 설명한다. 전도도의 미분은 전하운반자 밀도의 미분으로 표현되고 이는 상태밀도함수 $g(E)$로 다음
과 같이 표현된다.

\[
\sigma(E) = n(E)\mu(E) = n(E)e^2 \frac{\tau(E)}{m}
\]

(4)

여기서, \(n\)는 전자 전하량이고, \(m^*\)는 전자의 유호 질량이고, \(\mu(E)\)는 전자의 이동도이고, \(\tau(E)\)는 전자의 완화시간 (Relaxation Time)이다. 식 (3)에서 보듯, \(S\)의 향상시키기 위해서는 \(d\sigma(E)/dE\)를 증가시키면 된다는 것이 명확하다. 이를 위해 두 가지 접근이 있는데 하나는 \(d(n(E))/dE\) 향상이고, 다른 하나는 \(d(\mu(\ E))/dE\)의 향상이다.

먼저 \(d(n(E))/dE\)를 살펴보면, 이는 상태밀도함수의 변화로 증가될 수 있는데 즉, \(d(g(E))/dE\)에 비례한다. 양자구속효과는 이러한 저차원 구조로부터 유도된 상태밀도함수의 변화에 의존한다. 실제로 그림 4에서 보듯이 상태밀도함수의 에너지 의존성은 저차원 구조와 같이 그 변화가 크게 달라진다 [11].

나노선에서 존재하는 국모화된 상태밀도함수는 \(S\)값을 크게 증가시킬 수 있다. 저차원에서 열전수용에 대한 개념은 편 오래된 것이지만 [12], 열전 성능 지수가 향상될 것이라는 예측은 Dresselhaus 교수팀에서 제안한 것이다 [1, 3].

전하 이동도의 에너지 상관성에 의한 항인 \(d(\mu(\ E))/dE\)은 식 (4)에서 보듯이 완화시간 \(\tau(E)\)의 에너지 상관성에 기인한다. 이것은 전자 에너지 베터링의 의미를 갖는다. 완화시간은 산란확률의 역수로 주어지는데, 이는 일반적인 반도체 이론에 의해 간단히 다음과 같이 표현된다.

\[
\tau = \frac{\tau_0}{E^{1/2}}
\]

(5)

여기서 \(\tau\)는 산란 지수로서 전자와 응항 포노간의 산란의 경우에 1이고, 전자와 중성 분자라원간의 산란의 경우는 1/2이며, 이온화된 결합원자의 산란의 경우는 0이다. 반도체 열전 기술개발의 초창기에는 \(\tau\)의 증가가 열전성능 향상에 도움이 된다고 생각하여 이온화된 결합원자에 대한 효과를 염두에 두고 노력하였다. 그러나 이러한 이온화된 결합원자를 첨가할 경우 PbTe의 경우 이동도의 감소를 가져 와서 오히려 역효과를 유발했고 [13], Bi의 경우는 열전 성능 향상을 가져왔다 [14].

3. 나노선 열전 재료

일반적인 이론적인 근거에 의하면 증가된 양자 구속 효과에 의해 1차원 나노선이 2차원 양자 유물 구조가 초격차 예외보다 \(ZT\)가 높게 될 것, 즉 증가할 수 있음을 예측하고 있다. 현재 나노선 기반의 열전 소자 연구는 CNT (Carbon Nanotubes), Si, Bi, PbTe 등에 대하여 대표적으로 MIT의 Dresselhaus 교수팀, UC Berkeley대학의 Majumdar 교수팀, Columbia대학의 Philip Kim 교수팀 등에서 주로 이루어져 왔다. 특히, 2008년 1월 Nature지에 Si 나노선을 이용한 \(ZT\) 값을 측정하는 논문이 Majumdar 교수팀 [7]과 Caltech의 Heath 교수팀 [8]에서 각각 연중을 발표되었는데 나노선에서 \(ZT\)값의 향상을 위해 Seebeck 상수 (S, Thermoelectric Power)를 높이거나 열전도율을 낮추려는 것이 최근 이슈가 되고 있다. Philip Kim 교수팀은 SWNT (Single wall Nanotubes)와 MWNT (Multi wall Nanotubes)의 개별 전압에 따른 Seebeck 상수 최적화에 관한 연구 [15, 16], Majumdar 교수팀은 MEMS (Micro Electro Mechanical System) 구조에 이용한 나노선의 열전도도 (\(\alpha\)) 측정에 대한 연구가 상당히 진행되어 왔으나.
며 [17]. Dresselhaus 교수팀은 Bi 나노선의 열전 특성을 측정하기 위하여 1960년부터 꾸준히 관련 연구를 진행해 오고 있다.

나노선 어레이를 만들기 위해 산화알루미늄 \((\text{Al}_2\text{O}_3)\) 텔플릿을 이용하는데 이는 직경 7~100 nm 이고 길이 50 \(\mu\text{m}\)의 나노 크기의 일정한 볼륨형태의 다공성 재널이고 100\%/cm\(^2\)의 밀도를 갖고 있다 [18, 19]. 채널의 구멍은 Bi나 Bi\(_3\text{Sb}_2\) 같은 열전물질로 채 워진다. Bi는 낮은 유효질량과 빠르며 에너지면의 큰 이방성 때문에 양자 구속효과는 77 K에서 50 nm의 나노선 직경에서 일어날 것으로 예상되었으며 [20] 이러한 효과는 실험적으로 검증되기도 하였다 [19, 21].

AAO (Anodized Aluminum Oxide)는 알루미늄 표면을 전기 연마 (Electro-polishing)와 양극 산화 (Anodization)를 통해 표면에 생성된 알루미늄 산화 물을 식각함으로써 형성할 수 있고, 공정 번수 및 공 정 횟수를 조절함으로써 다양한 pore 크기와 깊이를 가지는 텔플릿의 제작이 가능하다. 형성된 AAO 텔 플릿은 그 자체로 수심 \(\sim 100 \text{nm}\) 단위의 규칙적인 구조를 가지는 나노 구조체이며, 금속 표면에 형성된 AAO 텔플릿은 기판의 금속을 도전층 (Seed Layer)으로 사용하여 원하는 금속 및 반도체 물질을 전착법 (Electrodeposition)을 통해 나노 구조 내에 채워 넣어 어레이 (Array) 형태의 나노선을 형성할 수 있다 (그림 5). 그러나 이 방법으로 성장시킨 나노 선은 다결정 특성을 지녀 단결정 Bi 나노선에서 볼 수 있는 양자구속효과가 관찰할 수 없다는 큰 결함 이 있다. 압력 주입법 (Pressure Injection Method) [22] 역시 산화알루미늄 텔플릿의 나노채널 내부에 성장시키고자 하는 물질을 액체 상태로 녹인 후 고 압력을 가하여 채워 넣어 굽는 방법으로 전기화학 적 도금법과 달리 단결정 나노선을 성장시킬 수 있 지만 여전히 어려한 형태의 나노선상에서 2단자법으로 상대적인 전기적 특성의 측정이 가능하였고 단 일 나노선으로 소자화하지 못하여 열전 특성 평가를 하지 못하였다 (그림 6).

Bi는 매우 작은 유효질량과 함께 높은 이방성 밴 드구조와 열전재료에 유용한 높은 전하이동도를 가 지고 있다. Bi는 전자와 홀의 양이 같아 Seebeck 상수

저항의 온도 의존성은 이론 모델 계산 결과와 함께 실제 결과로부터 Bi 나노선이 양자 구조효과 때문에 반금속에서 반도체로 바뀐 것이 확인되었다 [24, 25]. 48 nm 이하의 나노선에서는 저항의 온도 의존이 반도체 성향을 보이고, 70 nm보다 큰 나노선에서 저항의 온도의존성이 반금속 성향을 보여 이론적 예측과 거의 일치함을 알 수 있다 (그림 8). 지금까지 Bi 나노선 어레이의 경우 Power Factor 증가를 보아 주는 결정적인 실험적 결과가 있다. 이것은 나노선 어레이와 단일 나노선의 점도 저항값을 측정하기가 어렵기 때문이다. 이는 나노선 어레이의 경우 오디 점도이 이루어진 나노선의 개수를 알 수 없기 때문이다. 단일나노선으로 소자를 만들고자 할 경우 텔블릿에서 제거된 단일 나노선의 표면에 산화층이 형성되기 때문이다.

그림 7. (a) Bi 나노선의 두께에 따른 에너지 밴드 근의 변화와 (b) Brillouin 존에 분포하는 전자와 홀의 포켓.

그림 8. Bi 나노선의 온도의존성 (a) 여러 가지 두께에서 측정된 온도에 대한 저항변화, (b) 이론적 계산 결과.
본 연구팀은 대표적인 열전재료인 Bi 및 Bi₂Te₃ 나노선 연구에 집중해 왔으며, 기존에 선행연구에서 선행된 연구와 달리 텔레포밍 제조나 촉매 제조를 거치는 일반적인 나노선 합성과정이 없고 이중물질의 개입이나 액상 혹은 기상의 상태변화 없이 Bi, Bi₂Te₃ 박막을 스피터링으로 중합 후 진공 열처리하여 초고품위의 단결정 Bi, Bi₂Te₃ 나노선을 성장시키는 방법을 개발하였다[26].

단결정 Bi 나노선은 Bi 박막에서 열처리시 박막에 유도된 압축응력에 의해 성장되는 것을 확인하였다(그림 9). 열처리시, 높은 열방출 제제(13.4 × 10⁶/℃)로 인해 부피팽창이 큰 Bi 박막을 상대적으로 부피팽창이 작은 Si 기판(3.0×10⁻⁶/℃)에 의해 압축응력(Compressive Stress)이 발생한다. 이러한 압축응력은 나노선 성장에 있어 열역학적 구동력(Thermodynamic Driving Force)을 제공하고 Bi 박막에 형성된 압축응력을 이용하여 최고 품위의 단결정 Bi 나노선을 성장시킬 수 있었다. Bi와 Te를 동시에 스피터링으로 중합하여 열처리하여도 열전재료로서 가장 우수한 특성을 알은 고품위의 단결정 Bi₂Te₃ 나노선이 성장되는 것이 최근 확인되었다[26]. 성장된 나노선은 직접이 급일하고, 나노선 표면위에 수화층을 형성하고 있다. 전자 회절 패턴은 나노선의 축방향에 수직으로 빛을 조사하여 Bi 용방적 자의(110)축을 바탕으로 표시되었고 나노선이 단결정이고 성장 방향이 <001> 방향을 나타낸다. 또한 양자분석계는 Bi 나노선에 결함이 없고, 단결정임을 보여준다(그림 9).

이와 같은 압축응력 유도법(Stress-induced Method)은 소자 패키징 공정에서 신뢰성 문제로 대두되었던 Whisker 생성 방식에 사용하여 부정적 요소를 급속한 방향으로 발전시킨 결과로 Bi 박막과 기판간의 열청장계수 차이에 의한 응력발생으로 응력을 해소하기 위하여 나노선이 성장되는 메커니즘을 바탕으로 한다. 이 방법은 쉽게 단결정 Bi 나노선의 성장이 가능하며 Bi 박막의 두께 조절에 따른 Bi 나노선의 정직정밀성가 가능하다는 장점을 지니고 있다[26, 27].

현재까지 Bi 단일 나노선의 열전 특성을 이해하기 위한 기초적인 전기 및 자기적 수송특성에 대한 연구.
구는 전무한 설정이다. 왜냐하면 Bi 나노선 표면에 형성되는 자연 산화층 (BiOx)으로 인해 전기적 오믹 형성이 어렵고, 또한 Bi가 낮은 녹는점 (271.3 °C)을 가지므로 외부 전극과의 오믹형성을 위해 열처리를 할 수 없어서 Bi 단일 나노선의 소자화가 어렵기 때문이다. 본 연구팀은 오믹 접촉을 형성하기 위해 독자적인 기술인 기판 바이어스를 결여 플라즈마 에칭 (Plasma Etching) 공정으로 자연 산화층을 제거하여 단일 Bi 나노선 소자지를 제작하여 정상 자기 저항 (Ordinary Magnetoresistance), Shubnikov-de Haas 진동 등을 관찰하였다 [27].

그림 10(a)는 단결정 Bi 단일 나노선을 이용한 소자와 그림 10(b)는 단결정 Bi 단일 나노선의 선형적 특성을 보이는 I-V 곡선을 보여준다. 또한 단일 Bi 나노선 소자에 백 게이트를 덧아서 최초로 게이트 효과 (Gate Effect)를 관찰하였다 [27]. 특히, 페르미 준위를 조절하여 Bi 나노선에 게이트 효과로 전기적 도핑을 할 수 있고 이는 열전 효과를 극대화 시킬 수 있다. 전자 이동도 $\mu_d = 76,900 \text{ cm}^2/\text{V} \cdot \text{s}$가 자유행동거리는 l = 1.3 μm를 확인하였으며, 이 결과는 아주 우수한 캐리어 이동도를 보이며초고속 (HETM: High Electron Mobility Transistor)로의 응용이 가능하다 [26, 27]. 본 연구팀은 압축응력 유효도를 이용한 단결정 Bi, Bi$_2$Te$_3$단일 나노선 소자간장을 최적화시키며 단일 나노선 소자의 Seebeck 상수 (S), 전기 전도도 (σ), 열전도도 (β)를 구하고 열전 성능 지수의 향상을 위한 연구를 진행 중이다.

4. Si 나노선의 열전특성

불록상의 Si는 일반적 반도체 전자재료로써 매우 중요한 물질이지만 절로 열전재료로써 좋은 재료가 아니라고 여겨졌다. 왜냐하면 전기전도도가 매우 크며 열전성능이 매우 낮기 때문이다. 그러나 나노선으로 만들어지면서 Si는 전해제로의 특성을 갖게 된다. UC Berkeley대학 Majumdar 교수팀 [7]과 Caltech의 Heath 교수팀 [8]은 각각 독립적으로 Si 나노선의 열전성능이 나노선의 형태와 도핑을 제어하면 매우 크게 증가한다는 근본에 보고하였다. 두 그룹은 Si 나노선의 ZT값을 상온과 저온에서 거의 1에 가까운 값을 얻었다. 그들은 Si 나노선의 경우 아주 작은 열전도도 값을 갖는다는 것을 발견했다. 흥미롭게도, Caltech의 Heath 교수팀은 1-D 포용 플래시 효과로 인해 S가 매우 증가되는 것을 발견했다. UC Berkeley대학 Majumdar 교수팀은 Si 나노선 제작 시 그들의 고유한 방법인 "Electroless Etching" 방 법을 사용했는데, Si 웨이퍼 표면에서 HF/NO$_2$ 수용액으로 침전한 은의이온을 촉매 역할하는 환원반응을 통해 Si 웨이퍼를 수직으로 깎아 내어 Si 나노선 어레 이를 제조하는 방법이다.

그림 11과 같이 표면이 매끄러운 나노선을 만든
일반적인 다른 합성법과는 달리 이 기술은 웨이퍼 표면에서는 거친 표면의 특성을 보이는 수직으로 정렬된 Si 나노선 어레이를 만들어 냈다. 거친 나노선 표 면은 Si 나노선의 열전도도를 100배 감소시키는데 절 대적으로 중요한 역할을 하지만 이 현상을 물리적 배경은 완전히 설명되지 않고 있다. 앞으로 최적화된 도핑정도와 거칠기의 조절을 통해 상상에서 1보다 더 큰 ZT값을 얻을 수 있을 것으로 기대하고 있다.

한편 Caltech의 Heath 교수팀은 단면적이 10 nm × 20 nm와 20 nm × 20 nm인 나노선을 Superlattice Nanowire Pattern Transfer (SNAP) 방 법을 이용하여 불순물 농도가 조절된 단결정 Si 나노선을 만들었다. 나노선의 크기와 불순물 도핑 수준 (Impurity Doping Levels)을 변화시킴으로써, 넓은 온도 범위에서 볼크상태의 Si보다 약 100배나 증가된 ZT값을 얻었고, 200 K에서도 ZT = 1값을 얻었다(그림 12).

비록 Si 나노선은 효율이 좋은 다른 열전물질에 비해 낮은 열전성능을 갖지만 두 연구팀은 이 물질의 효율증가가 곧 이루어질 것이라고 낙관하고 있다. 여기서 우리가 주목할 점은 Si와 같은 저가의 열 전재료를 새로이 얻어내었다는 점과 나노선 구조로 만들어진 열전재료는 열전도도 뿐 아니라 전력인자

![그림 11. UC Berkeley대학의 Majumdar 교수팀에서 제작한 Si 나노선 (a) 거친 표면을 가진 Si 나노선의 SEM 이미지, (b) 측정된 열전도도.](image)

![그림 12. (a) Caltech의 Heath 교수팀이 제작한 Si 나노선 어레이와 (b) 측정된 ZT값.](image)
(Thermoelectric Power)까지 쉽게 증가시킬 가능성을 확인하였다는 점에 주목할 필요가 있다.

5. 나노선의 열전특성 측정기술

열전 나노선의 연구에 있어서 가장 큰 장애물은 열전 특성 측정에 있다고 해도 과언이 아니다. 별다른 열전 특성의 상이하게 열전 나노선의 경우, 전기적 및 열적접촉을 만드는 것이 쉽지 않고, 나노스케일에서 열의 호흡을 통해고 특성 나노스케일의 위치에서 온도변화를 측정하는 것이 매우 어렵기 때문이다. 특히 Bi 나노선은 공기 중에서 나노선의 표면에 10 nm 두께의 산화층 (Bi₂O₃)을 가지고 있어서 자 제작 시 오작접촉 현상이 매우 어렵다. 2001년 MIT Dresselhaus 교수팀은 산화금속 빅플롭을 이용한 전기도급법으로 Bi나노선 어레이를 성공시켰으며 이를 이용하여 2단자 소자 제작을 하여 어레이 형태의 Bi 나노선의 특성을 관찰한 바 있다 (그림 13)[18]. 그러나 이 경우 다결정 Bi나노선을 어레이 형태로 하여 2단자로 측정한 결과에서 단일 나노선의 열전 성능을 측정할 수 있다는 기본적인 문제 가 있다. 또한 Caltech의 Heath 교수팀 [29]은 스피터 맵을 이용한 Bi 나노선을 제작하여 나노선의 크기 효과에 따른 열전 특성을 측정하였으나 제작된 나노선이 다결정이나 단결정에서 관찰될 수 있는 양자 구조 효과를 관찰하지 못했다는 물론 열전효과 상승을 기대할 수 없었다 (그림 14). 전술한 바와 같이 본 연구팀은 클라우스마 예정법으로 나노선 표면의 산화막을 진공 중에서 제거한 후 진공을 깨지 않고 바로 전극을 충착시킴으로 오작접촉을 만들 수 있어서 이론적 향을 해결하였다 [26, 27]. 뿐만 아니라 수소 염처리법도 오작접촉을 만들는데 아주 박차한 효과가 있음을 확인하였다.

UC Berkeley대학 Majumdar 교수팀은 나노선의 전기전도도를 측정하기 위하여 그림 16(a)와 같이
MEMS 기술을 이용하여 퍼워진 구조의 측정구조물을 개발하였다. Majumdar 교수팀은 이 구조물을 이용하여 탄소나노튜브 [15], Bi₂Te₃ [30], Si [31] 나노선의 열전도를 성공적으로 측정하였다. Caltech의 Heath 교수팀이 제작한 Si 나노선 어레이와 측정된 ZT값에서 만든 구조물(그림 16 (b))인데 나노선이 높은 부분의 기판을 폐쇄하여 격리하고 최소한의 구조물만 뿐만이 측정하는 방식인데, 이 구조물을 이용하여 Si 나노선의 열전도를 측정하였다 [8].

Seebeck 상수 (S)값 측정에서는 열 호흡을 완벽하게 제어하지 않아도 측정이 가능하다. Columbia대

그림 14. Caltech의 Heath 교수팀의 스피터링법을 이용하여 제조한 Bi 나노선의 열전 특성 측정 (a) 스피터링법으로 제작한 Bi 나노선의 SEM 이미지 (b) Gate-voltage에 따른 S값.

그림 15. MEMS 구조를 이용한 κ 측정 개략도.

그림 16. (a) UC Berkeley태양의 Majumdar 교수팀에서 개발한 Suspended MEMS 구조, (b) Caltech의 Heath 교수팀이 제작한 Suspended MEMS 구조.
학의 Philip Kim 교수팀은 [32, 33] 그림 17과 같이 마이크로 히터와 마이크로 온도센서를 나노선 양단에 위치시켜서 온도 차이에서 유발되는 전위차를 측정하였다. 이 마이크로 히터 선에 공급된 바이어스 전압은 줄 히팅 (Joule Heating)을 발생시키고, 접촉 영역 근처에 부분적으로 온도 구배를 발생시킨다. 이 열은 주로 SiO₂층 (1 μm 두께)을 따라 전도되면서 나노선의 길이 방향을 따라 온도 분포가 생성된다.

본 연구팀은 단결정 Bi 및 Bi₂Te₃ 나노선의 Seebeck 상수와 전기적 특성 측정을 통해 제조한 Au 전극을 이용하여 나노선 양단에 발생한 온도 변화를 측정하고 있다 (그림 18). 나노선 양단의 온도구배는 그림 18. Seebeck 상수 (S)를 측정하기 위한 Bi 나노선 열전 소자의 개략도.

그림 17. Seebeck 상수 (S)를 측정하기 위한 전도율 나노튜브 소자 (a) 소자의 SEM 이미지, (b) 온도와 전위차 측정을 위한 개략도.

그림 18. Seebeck 상수 (S)를 측정하기 위한 Bi 나노선 열전 소자의 개략도.

그림 19. (a) MEMS Test Structure를 이용한 단일 단 결정 Bi 나노선 소자와 (b) 나노선 직경에 따른 열전도도 측정결과.
나노선의 온도에 따른 저항 변화와 히터에 인가된 전류량 및 시스템의 온도 변화에 의해 결정된다. 따라서 히터에 인가한 미세 온도 구배를 측정할 수 있는 Au 전극의 폭 및 안정성 공정기술의 확보가 필요하다. 이와 같은 나노선 열전소자로부터 Bi, 나노선의 양자 구속 효과 (Quantum Confinement Effects)를 확인하기 위하여 Fermi Level을 바꾸어가면서 측정할 수 있는 게이트 구조를 이용하고 있다. 한편 Bi 및 Bi₂Te₃ 나노선의 열전도도 (α)는 UC Berkeley Magumdar 교수팀과 공동연구의 일환으로 MEMS Test Structure를 이용하여 측정중이다. 그림 19(a)는 MEMS Test Structure 위에 올려간 단일 Bi 나노선과 그림 19(b)는 Bi 나노선 직경에 대한 열전도도 측정결과를 보여 준다. 측정된 단결정 Bi 나노선의 직경은 105 nm와 226 nm이었으며, 각각의 열전도도는 상온에서 2.4 W/mK와 3.0 W/mK로 측정되었다. 이 값은 별호 Bi (상온 기준 열전도도 = 8.0 W/mK)에 비해 매우 낮은 값이며, 이는 양극발열량으로 성장된 단결정 Bi 나노선이 매우 낮은 열전도도를 가짐을 증명하는 결과이다.

6. 결론

2000년대에 들어서 나노 기술 (Nanotechnology)의 응용으로 열전 물질의 성능지수가 현격히 향상되고 있다. 열전 현상을 이용한 에너지 변환기술은 군사용, 우주항공분야에서의 열전 발전, 특정 지점 냉각, 소형 열전난각 제품과 같이 특수한 목적으로 사용되는 특화시장 (Niche Market)에 적용되는 수준에 머물러 왔으나, 21세기에 들어 신재생 에너지 개발과 에너지 이용효율의 극대화 및 친환경적 에너지원의 개발 측면에서 열전에너지 변환기술에 대한 관심이 다시금 고조되고 있다. 초고효율의 나노 열전소자의 개발은 경제적인 측면에서 기존의 에너지시스템을 대체할 수 있을 뿐만 아니라 폐열의 재활용, 청정에너지의 개발 등을 통해 막대한 에너지 수입비용 절감이 기대되며 또한 세계 최고 수준의 국내소재 제작기술과 시너지효과를 통하여 기존의 진전, 첨단, 자동차, 바이오 등 산업 전반에 일대 변화를 기대할 수 있다. 특히 최첨단 전자장비와 생명기술 연구 분야에서는 정확하고 세밀한 온도제어를 위하여 고성능의 열전난각소자에 대한 개발요구가 점점하고, 이러한 요구에 부합하기 위해서는 뛰어난 열전성능을 지닌 재료 개발이 반드시 시행되어야 한다.

혁신적인 에너지 변환시스템을 개발하기 위하여 임계 발산 효율 ζT = 3을 구현하는데 1차원 나노선 기술이 중요한 역할을 할 것으로 기대를 모고 있다. 나노선을 이용한 주요 연구 방향는 전통 열전물질인 Bi 계열의 재료를 기반으로 한 양자 구속효과에 의한 전력인자 (S')가 상과 나노구조에 의한 열전도가 감소한 한계점 방향이고, 또 다른 중요한 방향은 Si와 같은 매우 저가의 재료를 이용하여 나노선에서 얻어내는 열전도도의 감소와 에너지 뱅크에 지나지 않아딩에 의한 전력인자 향상에 의한 것이다. 단순히 나노구조만으로 도입하더라도 열전도도를 1/3 배 정도는 감소시킬 수 있으므로 보통 열전물질에 기반을 둔 나노구조로 ZT값이 3 이상을 기대할 수 있다. 또한 발로 상에서는 거의 열전효과를 갖지 못하는 Si를 표면에 절단 나노선으로 만들면 열전도도가 100배 가량 감소됨이 확인됨으로써 열전 나노선의 응용을 한층 가속화시키고 있다. 물론 발로 열전재료의 실험 및 및열 전에 나노선의 경우 실용화는 아직 깊지 않다. 그럼에도 불구하고 나노선 기반 열전소자와 21세기 에너지 변환시스템의 새로운 패러다임을 제시할 것으로 많은 사람들의 기대를 모고 있다.

감사의 글

산업자원부 소재원천기술개발사업, 학술진흥재단 (KRF-2007-314-C00107) 및 한국과학재단 특정기 초연구사업 (R01-2005-000-10711-0)의 지원에 감사를 표한다.

참고 문헌

[1] A. Majumdar, 'Thermoelectricity in Semiconduc-

TURING NANOWIRE BY USING STRESS-INDUCED GROWTH", 한국 (출원 06-137069), PCT (PCT/KR2007/006944), 미국 (출원 12/064,861), 유럽 (출원 785359.1).

