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Abstract

Silicide-based thermoelectric (TE) materials are promising candidates for automotive TE generators, which can collect wasted
heat and convert it into electricity. Adequate strategies should be used to manufacture highly efficient silicide-based TE
devices. This review summarizes novel strategies for obtaining materials that feature excellent TE properties and mechanical
reliability. Controlling the carrier concentration and band structure could increase their electronic transport properties, while
nanostructure engineering could effectively reduce their lattice thermal conductivity. Moreover, well designed microstruc-
tures are required to obtain mechanically reliable TE materials, which indicates that precisely controlling their nanostructure
is essential for the improved trade-off relationship between TE and mechanical properties. While many challenges should
still be overcome, the development of highly efficient TE materials and devices could represent new solutions for the global
energy crisis.
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1 Introduction efficiency and mechanical reliability, and also their price
competitiveness. The efficiency of TEG devices can be cal-

1.1 Thermoelectricity culated as follows:

Renewable energy is a research area that is gaining global _ L -T. CVI+ ZT -1

attention owing to environmental pollution concerns and the = T, m + L ' M

exhaustion of fossil fuel resources. Particularly, air pollution T

from fossil fuel used for fueling vehicles and in industries is
a concerning global problem. The thermoelectric (TE) tech-
nology involves the direct and reversible conversion between
thermal energy and electrical energy that is generated as

where T, and T, are the temperatures of the hot and cold
sides, respectively, T is the average of T, and 7., and ZT is
a dimensionless figure of merit. This dimensionless figure
of merit can be used to evaluate TE materials and has been

electrons or holes move owing to temperature differences. defined as:

Given that more than 60% of energy is wasted as heat dur-

ing the energy generation and consumption process, ther- 7T = ¢5%/k 2)
moelectric power generation (TEG) is a promising energy

generating technology. TEG devices present great advan- ~ Where 6, S, T, and k are the electrical conductivity, Seebeck

tages, including long life and high degree of environmental ~ coefficient, absolute temperature, and total thermal con-
friendliness. Moreover, they can be manufactured in various ductivity of the material, respectively. TEG devices consist
areas from local to large areas. However, TEG devices are ~ ©f a TE material, electrodes, paste materials, and diffusion

still difficult to commercialize owing to their low energy ~ barriers. Among these, the TE material is the most impor-
tant component that determines their efficiency. Therefore,

various strategies should be established to allow researchers
to obtain materials with high ZT and excellent mechanical
reliability and to develop inexpensive manufacturing pro-
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1.2 Silicide-Based TE Materials

Recently, various TE materials featuring high ZT values
have been researched, including skutterudites, half-Heusler
alloys, silicides, and chalcogenides (Fig. 1 and Table 1)
[2-23]. The ZT value of Bi, 5,Sb, 44Te;, which presented
dense dislocations, was ~2.0 at low temperature [2], while
those of PbTe-, Ag—Pb—Sb-Te-, and SnSe-based TE mate-
rials were as high as~2.5 at mid-to-high temperature [14,
16, 21, 22]. However, most TE materials that present very
high ZT values contain expensive and toxic elements, and
therefore, can be difficult to commercialize. Because Bi and
Te are very rare, they are also very expensive. Moreover,
the use of Pb and Se has been gradually reduced world-
wide owing to their toxicity. Therefore, cost and toxicity
considerations are essential when developing TE materials.
Consequently, silicide-based materials could be promising
candidates for TE materials and devices. Silicide-based TE
materials have received significant attention as automotive
thermoelectric generators (ATEGs) owing to their low den-
sity, low cost, and non-toxicity.

Magnesium silicide (Mg,Si) and higher manganese sili-
cide (HMS) are representative n- and p-type silicide-based
TE materials, respectively. Mg,Si presents cubic structure
(Fm3m space group) and a narrow bandgap (~0.77 eV)
[4]. Generally, the ZT of un-doped Mg,Si is lower than 0.1
owing to its very low electrical conductivity. However, the
ZT of doped Mg,Si could reach 1.0 at 873 K [4]. Moreover,
the maximum ZT of ~ 1.5 was attributed to its high § and
low k values in Mg,(Si, Sn) solid solution [24]. Addition-
ally, controlling the Mg/Si ratio and the secondary phases,
such as Si and MgO are effective route for enhancing the TE
properties and ensure the thermal and chemical stability of
Mg,Si [25, 26]. Despite its high ZT values, the applications
of Mg,Si have been limited owing to its low mechanical reli-
ability (fracture toughness, Kj,, value of ~0.82 MPa m 2),
which suggested that more research into the mechanical reli-
ability of TE materials is required to fabricate efficient TEG
devices [27].

Unlike Mg,Si, HMS exhibits complex tetragonal crystal
structure (Mn sub-lattices (chimneys) and interpenetrat-
ing helical Si sub-lattices (ladders)) known as the Now-
otny Chimney Ladder (NCL) structure [28]. Moreover,
depending on their Mn-to-Si atomic ratio, HMS presents
different phases, including Mn,Si, Mn,;Si,9, Mn,5Si,4, and
Mn,,Si,;, which are NCL phases of various stoichiometry
[28]. Although HMS phases exhibited the different lattice
parameters (a=b=5.52-5.53 A and ¢=17.46-117.90 A)
and space groups (PZCZ, P4 n2, IZZd, and P é_ln2), their
electronic band structure (0.76-0.78 eV) and intrinsic TE
properties (ZT=~0.4 at 700-800 K) are similar [29-32].
The MnSi and Si secondary phases of HMS negatively affect
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Fig. 1 Figure of merit, Z7, as function of temperature for typical ther-
moelectric materials. Here, NWs nanowires and CNT carbon nanotube

their TE properties. Therefore, suppressing the secondary
phases generation is essential for achieving good TE prop-
erties by optimizing the fabrication process and performing
compositional tuning [33-35]. The ZT values of HMS doped
at the Mn- and Si-sites have been reported to be as high
as 0.6. Furthermore, nanocomposite engineering strategies
have been used to improve the TE properties of doped HMS
by manipulating their electronic and thermal transport prop-
erties [8]. Despite their low ZT values compared with those
of Mg,Si, HMS exhibits excellent mechanical, chemical, and
thermal stability, and therefore, novel strategies for improv-
ing their TE properties are required.

Herein, we summarize the strategies for improving the TE
properties and mechanical reliability of silicide-based TE
materials. We also demonstrate the importance of microstruc-
ture and band structure control to obtain the high TE proper-
ties and mechanical reliability of silicide-based TE materials.
Lastly, we suggest development directions and provide mate-
rial design guidelines for silicide-based TE materials to obtain
highly efficient TEG devices.

2 Increasing ZT of Silicide Bulk Materials
2.1 Compositional Tuning and Optimizing n_

The individual relationships between S, ¢, and k and n., can
be expressed using the following equations:

871'2/(2 2/3
B * T
= o
S= 3™ <3n> ’ ®)
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Table 1 Thermoelectric properties of state-of-art thermoelectric materials

Material Carrier type PF Kot Ky T(K) ZT  Synthetic method® References
@EWem™ Wm™ (Wm™!
K2 K K
Bi, sSb, sTe, D 37.79 0.65 0.34 320 1.86 MS-SPS [2]
Cuy ;Bi,Te, ;Se( 3 n 29.71 1.12 398 1.06 BM-HP [3]
Al 0,Mg 96Si o7Big 03 n 28.8 2.45 0.88 873 1.02 SSR-SPS [4]
Mg, 155i(285n( 71Sbg 006 n 44.32 2.33 700 1.30 SSR-SPS [5]
Sb doped Mg,Si sSn 5 n 25.81 0.98 0.49 615 1.63 Melting-SPS (press-less sintering) [6]
Mg,Lig 40551450y 6 p 14.31 1.30 675 0.70 Melting-PECS [7]
MnSi, 746Te 03 (Te NWs) p 15.88 1.87 1.47 823 0.70 Wet BM-SPS [8]
Reg \Mny 4Sigs 6 p 23.10 2.09 1.01 920 1.04 SSR-BM-SPS [9]
Hf 5Zr sNiSn goSby o n 49.27 447 2.04 873 1.00 AM-BM-HP [10]
xCo/Bay 3In, 3Co,Sby, n 51.98 2.53 0.71 850 1.75 Melting-SPS [11]
(Sr, Ba, Yb),Co,Sb, n 44.42 2.06 835 1.80 SSR-HP [12]
PbTe/PbSe nanoparticles n 26.61 0.87 0.40 623 1.85 Solution based reaction+ SPS [13]
PbTe g55€( 15—2% Na—4% SrTe p 23.50 0.96 0.46 923 2.30 Melting-SPS [14]
PbTe—StTe doped with Na,Te )4 19.28 0.94 0.46 800 1.70 Melting [15]
(2 mol%)

PbTe-SrTe doped with 2 mol% Na p 23.88 0.97 0.53 915 2.20 Melting-SPS [16]
PbSe+3% CdS p 16.96 0.99 0.64 923 1.60 Melting-SPS [17]
Cu,Se+CNT p 8.79 0.37 1000 2.40 BM-SPS [18]
Yb,,Mn,_ Al Sb, p 5.55 0.52 1223 1.30 Flux method [19]
AgPb, SbTe ., n 15.35 0.72 723 1.54 BM-SPS [20]
SnSe,_,Br, crystal n 8.98 0.25 0.20 773 2.80 Bridgman method [21]
SnSe single crystal p 9.90 0.35 923 2.60 Bridgman method [22]

4MS melt spinning, SPS spark plasma sintering, BM ball milling, HP hot pressing, SSR solid state reaction, IM induction melting, PECS pulsed

electric current sintering, and AM arc melting

0 = n.elp,, (4)
and
k = LoT = Ln.epy,T, o)

where m*, p, and piyy,, are the effective mass, electric resistiv-
ity, and Hall mobility, respectively, e is the electron charge,
kg is the Boltzmann constant, and L is the Lorenz number.
These relationships indicate that control of n_ is a key strat-
egy for achieving high ZT values. The optimization of n,
via doping is essential for improving the TE properties of
silicide-based TE materials, owing to their low ZT values
(~0.1 and ~ 0.4 for Mg,Si and HMS, respectively) [33, 36].
Sb and Bi are the main n-type doping elements that replace
the Si sites, and Al is another n-type doping element that
substitutes the Mg sites of Mg,Si-based compounds [4,
36—40]. Various other dopants, such as Y, Te, and Pb were
also used, however, the increase in the TE properties of the
Mg,Si-based materials was insufficient (Fig. 2 and Table 2)
[41-44]. Sb and Bi doping caused n, to increase, which led
to the increase in ¢ and decrease in the lattice thermal con-
ductivity (k;,,) via point defect phonon scattering [36-38].

Kim et al. were able to obtain a Mg,Si-based material fea-
turing the ZT value of 1.0 at 873 K by optimizing its n,
(0.9 % 10%°-1.2x 10*° cm~3) and controlling the solubility
of Bi via a co-doping strategy [4].

Using doping element control, it is possible to obtain
Mg,Si-based compounds that feature p-type characteris-
tics. Li, Na, and Ga are representative p-type doping ele-
ments. Among them, Li and Na are substitutional dopants
at the Mg site, and Ga is a dopant at the Si site (Fig. 3 and
Table 3) [7, 45-52]. The p-type Mg,Si comprises doped
Mg,Si-Mg,Sn and Mg,Sn-Mg,Ge solid solutions. The
presence of these solid solutions increased the S value
of the p-type Mg,Si owing to band convergence and
decreased its kj,, value owing to intensified phonon scat-
tering [7, 45-49]. The ZT value of the p-type Mg,Si was
0.7 at 675 K, which was still lower than that of the n-type
Mg,Si [7].

Typically, HMS is generally known to be the p-type coun-
terparts of Mg,Si-based TE materials. The TE properties of
the undoped HMS are poor (ZT'~0.4) [33] and their n, are
relatively high (1.1 x 10*'-2.7x10?! cm™) [53]. V, Cr, Fe,
Co, W, and Re were investigated as doping elements at the
Mn sites, and Al and Ge were studied as doping elements
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nanowires and MnS were high (~ 0.7 and 0.6, respectively
at 823 K). These values were achieved by reducing k;,, to
the theoretical limit [8, 34]. Additionally, the power factor
of the HMS nanocomposites could be increased by control-
ling their band alignment. Precisely controlling the band
gap and work function of the matrix and nanophases, led to
the minimization of the decrease in iy, at the interfaces;
consequently, the power factor could be improved using the
energy filtering and charge transfer effects. We fabricated
metal NP-embedded HMS nanocomposites and HMS/metal
silicide composites and determined that the increase in their
power factors by the precise control of the band alignment
and interfacial properties of these materials. Moreover,
unexpected nanostructures (dislocations, precipitates, and
secondary phases), induced by novel synthesis technique,
led to the decrease in k;,;, which, consequently, increased the
ZT value [9, 55, 57, 66, 67, 84]. Nanostructure engineering,
including the introduction of nanophases or heterostructures
in HMS TE materials, is an effective route for increasing
their power factors by controlling their interfacial properties,
and also for decreasing kj,, owing to the intensified phonon
scattering at interfaces. Therefore, material design optimiza-
tion should be implemented to maximize the increase in ZT.

2.3 Band Structure Modification

Band structure modification via the formation of point
defects is an effective for increasing the power factor.
Band structure modification strategies, including band

convergence, band flattening, and resonant states, can
increase the density of states near the Fermi level, which
would result in the increase in S [86]. For Mg,S-based com-
pounds, pseudo-binary (Mg,Si-Mg,Sn, Mg,Sn—-Mg,Ge, and
Mg,Sn—-Mg,Pb) and pseudo-ternary (Mg,Si-Mg,Sn-Mg,Ge,
Mg,Si-Mg,Sn-Mg,Pb, and Mg,Sn-Mg,Ge-Mg,Pb) systems
contributed to the band convergence effect [5, 6, 24, 87-99].
Moreover, alloying Mg,Si with Mg,Sn, Mg,Ge, or Mg,Pb
reduced the x;,, values of these Mg,Si-based compounds owing
to the intensified phonon scattering by point defects and nano-
particles. Therefore, the convergence of the conduction bands
could lead to high ZT values. Figure 8 and Table 7 show the
ZT values of the above-mentioned doped pseudo-binary and
pseudo-ternary systems [5, 6, 24, 87-102]. The ZT values of
these systems were higher (> 1.0) than those of doped Mg,Si
(Fig. 2).

The TE quality factor, B, was introduced to elucidate the
mechanism of the increase in ZT via band convergence. The B
factor, which depends on the thermal and electronic transport
properties of materials, and also on ZT, can be expressed as
follows [86]:

2kzh N,C,
B=— ——= T ©)

Py
3r myE%k,

where £ is the reduced Planck constant, N, is the number of
degenerated valleys of the band, C, is the average longitu-
dinal elastic moduli, mf is the inertial effective mass, and =
is the deformation potential coefficient. The increase in N,
owing to the small energy separation (AE) between the light
and heavy conduction bands (Fig. 9) led to the increase in B,
which indicated that ZT could also be increased.

The Sb or Bi doped Mg,Si,_,Sn, (0.4 <x<0.7) has a high
ZT (> 1.0) owing to the decrease in k;,, and the increase in S
[5, 6, 24, 87-95, 99]. Yin et al. determined that an increase
in Ge content in pseudo-ternary Mg,Si-Mg,Sn—-Mg,Ge sys-
tem caused the improved ZT owing to smaller AE and the
intensified phonon scattering [95]. Liu et al. investigated
the pseudo-binary Mg,Sn-Mg,Ge system [96, 97]. The ZT
value of Mg,Sn 13Ge ,55b, o, Was higher than those of
Mg,Sn systems owing to band convergence and Ge alloy-
ing. Moreover, they determined that Ge alloying caused the
weighted mobility to increase, band gap to widen, and «,
to decrease [96].

According to Eq. (3), if m* is high, S will also be high.
Increasing m* via doping could be caused by the increase in

m;. However, m; is related to the uy,, as follows:
— N2/3
m* = N*3m?, )

where mj is the band effective mass of a single valley.
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Fig.5 Schematic, scanning electron microscopy, transmission elec-
tron microscopy, and energy-dispersive X-ray spectroscopy images
of microstructure of silicide-based thermoelectric nanocomposites:

Huan & — 3575+
e ®)

Therefore, increasing m* via doping would not cause the
power factor to increase owing to the decrease in o, which
was, in turn, caused by the decrease in py,; [103]. Kim et al.
[4] and Lee et al. [63] increased m* by doping Mg,Si and
controlling the Si contents in HMS, and consequently, the
power factor increased owing to the synergistic effect of the
increase in n, and m* (Fig. 10a, b). Moreover, Gao et al. [67]
and Shi et al. [104] increased the S value and power factor

@ Springer

5 pm

5 pm

a heterostructure, b nanoparticles/nanoinclusions, and ¢ nanosheets/
nanowires. Here, rGO reduced graphene oxide. Reprinted with per-
mission from [1]. Copyright 2019 J. Korean Ceram. Soc.)

of HMS by tuning m* using a new fabrication process: the
rapid solidification and shock wave process.

Band structure modifications require precisely controlled
doping strategies to achieve high TE properties. Therefore,
it is important to systematically control the composition of
TE materials, because precisely manipulating their band
structure could lead to the increase in their TE properties.
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Fig.7 Figure of merit, ZT, as function of temperature for p-type
higher manganese silicide nanocomposites. Here, NWs nanowires and
MWCNT multi-wall carbon nanotube

K. is reached. This is the main mechanism for increasing
K;. and can be observed when nanophases are introduced in
nanocomposites [27, 77]. Crack bridging and pull-out are
mechanisms for increasing Kj, that occur mainly in nano-
composites with one-dimensional (1D) and two-dimen-
sional (2D) nanophases. Low-dimensional nanophases can
interfere with crack propagation by absorbing the crack
propagation energy [68, 72]. Additionally, since the con-
tact area of the 2D nanophase is wider than that of the
1D nanophase, crack propagation energy can be absorbed
more effectively in nanocomposites with 2D nanophases
[105]. Therefore, the contents, morphologies, and intrin-
sic properties of the nanophases should be precisely con-
trolled, because K, highly depends on the microstructure
of nancomposites.

Kim et al. demonstrated the relationship between the
TE properties and K. values when various nanophases,
such as metal NPs, rGO, and dual nanoinclusions, were
introduced into Mg,Si. They also reported the dependence
of the TE and mechanical properties on the dimensions of
the nanophases [27, 68, 77, 78]. Figure 11 shows the K|,
values of Mg,Si nanocomposites. The K|, of the 3-dimen-
sional nanophases (metal NPs) was 1.10 MPa m"? and was
achieved via crack propagation deflection; nonetheless, the
effect was insufficient owing to interface density satura-
tion. However, for 2D nanophases, all three K, enhance-
ment mechanisms were activated, and the highest achieved
K;. was 1.88 MPa m'”? [68]. Moreover, the crack propaga-
tion deflection mechanism was strengthened by introducing
dual nanoinclusions (metal NPs and rGO), which resulted

@ Springer
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Fig.8 Figure of merit, ZT, as function of temperature for n-type
pseudo-binary (Mg,Si-Mg,Sn, Mg,Sn-Mg,Ge, and Mg,Sn-Mg,Pb)
and pseudo-ternary (Mg,Si-Mg,Sn-Mg,Ge, Mg,Si-Mg,Sn-Mg,Pb,
and Mg,Sn-Mg,Ge-Mg,Pb) systems

in the high Kj, value of 2.26 MPa m'? [78]. Additionally,
Yin et al. achieved the K}, value of 1.36 MPa m'? by intro-
ducing SiC nanowires at the grain boundaries and studied
the effect of the nanophase morphology (nanoparticles and
nanowires) on the mechanical reliability behavior of mate-
rials [72].

However, a significant trade-off relationship exists
between ZT and K. Figure 12 depicts the relationship
between Z7T and K, for Mg,Si nanocomposites. The increase
in interface density between the nanophase and the matrix
caused the decrease in TE properties of Mg,Si nanocompos-
ites due to the decrease in iy, Therefore, it is important
to identify an optimal nanophase that could improve the
mechanical properties of materials while maintaining their
TE properties. Moreover, it is important to design rule that
can achieve a high trade-off relationship between the TE and
mechanical properties of TE materials.

4 Summary and Perspective

Herein, we summarize the methods for increasing the TE
and mechanical properties of silicide-based TE materials.
Although silicide-based TE materials have received sig-
nificant attention as ATEGs, their practical applications are
still hindered by many limitations. Various strategies, such

as composition tuning, n, optimization, nanostructuring,
nanocomposite engineering, band convergence, and effective
mass tuning, have been used to overcome these limitations,
and led to achieving ZT values of 1.6 and 1.0 for n-type
Mg,Si and p-type HMS, respectively. Moreover, the high
K, value of 2.26 MPa m'? was achieved for Mg,Si via the
introduction of nanophases to overcome its low mechanical
reliability. However, researchers should continue to develop
strategies for improving the TE properties and mechanical
reliability of the silicide-bases TE materials. Band and nano-
structure engineering were particularly important for over-
coming the trade-off relationships between n, and S, py,;
and «,, and ZT and K| .. Moreover, the novel technique that
enables us to design the material is a prerequisite. Hence, a
systematic strategy that combines calculations and experi-
mental results should be established to achieve the optimized
composition and microstructure design.

Moreover, not only the development of TE materials
but also the development of bonding, diffusion barrier, and
electrode materials are required. Research on increasing the
mechanical properties of TE materials, engineering surface
coating and sealing technologies to improve the chemical
stability of silicide-based materials, and developing diffu-
sion barrier and bonding materials are important research
areas for expanding the commercial applications of silicide-
based TE modules.

Although researchers are still facing challenges in their
attempts to improve the TE properties of silicide-based TE
materials and to develop high-efficiency TE modules, sys-
tematic studies and efforts could lead to significant progress
in this field.
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